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Whereas conventional fuzzy reasonings are associated with tuning problems which are

lack of membership functions and inference rule designs, a neural network driven fuzzy
reasoning (NDF) capable of determining membership functions by neural network is
formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the
optimum membership function is determined by a neural network, while in the consequent
parts, an amount of control for each rule isdetermined by another plural neural networks.
By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for

making a pendulum stand up from its lowest suspended point are determined for verifying
the usefulness of the algorithm.

1. INTRODUCTION

Extensive applications of fuzzy

reasoning for various control problems, and a

number of actual examples of fuzzy control

are reported [1] lately. However, the fuzzy

reasoning is generally involved with a

tuning problem [2], that is, the form of fuzzy

number, and the fuzzy variables of

antecedent parts and consequent parts of

fuzzy inference rules, have to be adjusted

for minimizing the difference between the

estimation of fuzzy reasoning and tile

output data for given input data.

As a method to solve tile tuning

problem, a neural network driven fuzzy

reasoning (NDF) [3, 4] by which inference

rules are constructed from the learning

function of neural network [5,6] is

previously reported. The NDF is a type of

fuzzy reasoning having an error back-

propagation type network [7] which represent

fuzzy sets in its antecedent parts .while

another error back- propagation type

network represents an input- output

relationship between input and output data

of consequent parts of each rule.

In this paper, an algorithm for
constructing inference rules based'on NDF is

introduced first, and an experimental

verification of its effectiveness is performed

taking an example for an inverted

pes_dulum system.

In this experiment, a pendulum in its

hanged position is surely swang up and is

held at an inverted position by using a

mechanism controlled by inference rules

which are constructed by determining fuzzy
sets from the observations of pendulum

operator by utilizing NDF algorithm.

The inference period required for

controlling the swing-up motion of pendulum

is approximately 15 msea As a parameter

which governs the dynamic characteristics of

inverted pendulum system, the length of

pendulum is considered here, and changes of

control characteristics of NDF caused by this

is studied. Since the fuzzy set of antecedent

parts and input- output relationship of

consequent parts can be determined by

means of NDF without finetuning of

inference rules by utilizing the learning

function of neural network acquired from

the input-output data, it is an advantageous
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method to solve tuning problems of fuzzy

reasoning.

2.. ARTIFICIAL NEURAL NETWORI< DRIVEN

FUZZY REASONING (NDF)

The NN - driven fuzzy reasoning

(NDF) is a fuzzy reasoning [8] using linear

functions in its consequent parts. In a NDF,

the membership functions in the antecedent

parts is determined in a multi-dimensional

space. For example, the following rules R1,

R2, and R3 of the conventional fuzzy

reasoning wherein xl and x2 are input

variables, yl, y2, and y3 are output

variables, and alO and all are coefficients,

and FSL and FBG are fuzzy numbers

where SL and BG mean small and big

respectively, are considered.

R1 ; IF xl is FSL and x2 is FSL,

THEN yl = al0 + allxll + a12x12

R2 ; IF xl is FSL and x2 is FBG,

THEN y2 = a20 + a21x21 + a22x22

R3 ; IF xl is FBG,

THEN y3 = a30 + a31x31

(D

Since the above condition means that

xl is small and x2 is small in the

antecedent parts, the fuzzy sets F1 = FSL

t_ FSL can be constructed in a partial space

of the input as shown in Fig. 1. The same

can be applied for the fuzzy sets to be

constructed for R2 and R3 likewise Since

the boundary between the each partial space

is vague, tile boundary is shown by the

hatched lines. That means that the input

space consisted of xl and x2 is divided into

individual partial spaces by the number of

fuzzy rules, and the fuzzy sets of

antecedent paz_ of each inference rules are

constructed in each partial space, while the

NDF is determined by the fuzzy sets of

antecedent parts by utilizing the back-

propagation type network.

An explanation for the back-

propagation type network is as follows. Since
neural networks are constrained by a

general type processing unit found in the
neural system, and the processing unit in a

neural network shares some of the physical

properties of real neurons, the processing
unit is called neuron here.

Fig. 2 shows an example of

fundamental layered back propagation type

networks containing M layers, where the

first layer is called an input layer, the M-

th layers are output layers, and other layers

are called intermediate layers. Every neuron

within these layers represents respective

correlation between the multi-inputs xij and

multi-outputs yi expressed by the following

equations.

yi= f (_- O_ij xij + 0) (2)

j=l

f(Z)= (3)

1 + exp(-Z)

where 0 is a weight showing a correlation

between neurons.

In this paper, for a given input and

output expressed by x = (xl, x2 .... xr0 and

y = (yl, y2 .... yw) respectively, the input-

output correlation of back-propagation type

network as a whole is expressed by;

y = NN(x) (4)

The structure of model function NN

(x) is characterized by M-layers [ulX u2X.,

xuM] where ui, i = l, 2 ..... M are the
numbers of neurons within the input, hidden

and output layers respectively. Fig. 2 shows

a structure of back propagation type

network consisting of four-layers [3X 2 X 2

X2].
Fundamental considerations made on

the NDF are that the model equations yl,

y2, and y3 in the consequent parts are

identified as the non-linear Eq. (4) for

obtaining the model equations.
The fundamental consideration

made on the membership functions in the

antecedent parts is a method shown in Fig.
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If the relationships between rules R1,

R2, R3 and input data (xil, xi2) where i = 1,

2 .... N are considered, the first data xl are

(xll, x12) = (0.2, 0.15), and these data belong

to rule R1. Thus the data attribution to the

rule can be expressed by (R1, R2, R3) = (1,

O, 0). The back-propagation type network

three-layers [2 × 3 X 2 ] of which input and

output layer are (Xll, x12) and (R1, R2, R3)

respectively can be denved from the input-

output data utilized in the learning process.

However, tile maximum number of learning

is limited to be less than about 1000.

When another data different from

the input-output data are assigned to the

neural network, the estimated values of

back propagation type neural network are

considered as membership values of fuzzy

sets in the antecedent parts since the

estimated value represents tile attribution of

data to each rule. A rule division performed

by NDF is typified in Fig. 4 which shows
non-linear divisions unlike the rectangular

divisions shown in Fig. 2.

Pao proposed a method for

determining fuzzy sets by using a neural

network [9], and obtained intersections and

union sets of fuzzy sets. However, what he

carried out were the determinations of

intersection and union sets of fuzzy sets

from the coupling patterns between each

unit of neural networl<, and was not the

type determining the shape of fuzzy sets

from the input-output data such as

excutable by NDF.

In a NDF, the control rules are

represented by an IF-THEN format shown

below.

Rs ;IF x = (xl, x2 ..... xn) belongs to As,
THEN ys = NNs(xl. x2 ..... xm)

where s = 1. 2 ..... r, m<_n (5)

Tile number of inference rules

employed here is expressed by r, and As

represents a fuzzy set in the input space

area of antecedent parts. The degree of

belongings of input x = (xl, x2 ..... xn) to the

s-th inference rule is defined to as the

membership value of fuzzy sets As to the

input x. Furthermore, the amount of

operations ys of consequent parts is an

estimated value for a case where a

combination of input variables (xl, x2 .....

xm) is substituted in the input layer of

back propagation type network, wherein the

number of variables employed in this case is

m according to a method for selecting the

optimum model employing back-propagation

type network.

Although it is also possible to

determine an overall non-linear relationship

by using only one back-propagation type

network, the determination of overall input-

output relationship by applying back-

propagation type network for each pal_ial

space is considered more advantageous than

employing only one back-propagation type

network for better clarification of overall

non-linear relationship.

In order to carry out an optimum

model selection for the back- propagation

type network of consequent parts, a stepwise

method [lO] by which a specified input

variable derived from a combination of input

variables is introduced and removed for

obtaining a model which outputs an optimum

estimated value, is available.

In the present work, only an

elimination of input variables from a

combination of input variables by utilizing

back-propagation type network is performed

for deriving an optimum combination of

input variables and model formula. A
summation of the second powers of residuals

is employed for evaluating and dtermining

the input variables.

An explanation for tile algorithm of

NDF is given in the following referring a

block diagram of NDF shown in Fig. 5. The

stepwise procedures taken for obtaining the
inference rules and the control value yi>l<

for the input data xi are as follows.

Step _ Selection of input variables, xl, x2 .....

xn, which are related to the control value y.
This is for an assumed case where the input
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-output variables (yi, xi) = (j/i, xil, xi2 ....

xin) where i = I, 2 ..... N, are obtained and

the input data xij where j = 1, 2..... n, are

the i-th data of input variable x_

Step 2= Division of input-output data into r

classes of Rs where s = 1, 2.... r. As

mentioned before, each partition is regarded

as an inference rule Rs, and the input-

output data for each Rs are expressed by (yi

(s), xi(s)) where i = 1, 2 ..... Ns providing that

Ns is a number of input-output data for

each Rs.

Step 3: Decision of membership functions in

the antecedent parts by using the neural

network NNmem shown Fig. 5 providing that

the structure of a back-propagation type

network is a M-layered [n X u2 X.-XuM-lx r].

The method for determining the form of

membemhip functions is described previously.

Step 4: Decision of control models in the

consequent parts by using the neural

networks NN1, NN2 .... NNr shown in Fig. 5

providing that the structure of each back-

propagation type network NNs is a M-

layered [kxu2 x...guM-lxl] where k = n, n-

1.... l, and selections of optimum model for

each NNs are performed.

Consequently, the stepwise procedures

for determining input variables by utilizing

back- propagation type network, and the

method for determining the structure of

consequent parts are described in the

following.

Setting a condition at k = n, the

input variables xi = (xil, xi2 ..... xilO where i

= 1, 2 ..... N, are assigned for the input layer

of each NNs, and the output variables yi is

assigned for the output layer of each NNs,

where the input variables assigned for the

input layer and the output variables

assigned for the output layer are

respectively expressed by:

s = {xl, x2..... xk} (6)
s= (y} @

where s represents a set of input variables

assigned for the input layer of each back-

propagation type network NNs, and s

represents a set of output variables assigned

for the output layer of NNs.

An estimation eyi for the input data

xil, xi2 ..... xik can be obtained after

repeated learnings made on tim back-

propagation type network of NNs. However,

the number of learnings is set at

approximately 3000. Then the sum of mean

squared errors of the output data yi and

estimation eyi is calculated for obtaining an

evaluation value @ks required for

determining the input variables.

N

@ ks = (X(yi -eyi)2)/N,

i=l

s=l, 2..... r. (8)

In order to study the degree of

correlation of the input variables xj to the

output variables y, the input variable xj is

temporarily removed from the set of input

variables {xl, x2 ..... xk}. The input data

from which the input variables xj is

removed, xil .... xij-1 .... xij+l ..... xjk where i

= 1, 2.... N, are assigned to the input layer

of M-layer of the back propagation type

network [k-1 u2 ... uM-1 l], and the

output data yi are assigned to the output

layer. Then, the estimation eyi' for the input

data xil ..... xij-1 ..... xij+l, can be obtained

after tile back- propagation learning. An

evaluation value @k- lsj required for

determining the input variables is derived by

calculating the sum of mean squared errors

of the output data yi for this estimation eyi'.

N

@ k-lsj = ()-(yi -eyi')" )/N,

i=l

s=l, 2 .... r. (9)

The same calculations are conducted

for the input variables other than xj for

determining the evaluations @k-lsl, @k-ls2,

.... @k-lsj ..... @k-lsk. The calculation of

evaluation which takes a minimum value,
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Ok-lsc, can be obtained by;

®k-lsc = minOk-lsj,

where j = 1, 2 .... k. (lo)

Eq. 10 shows that the evaluation @k-lsc

obtained by removing the input variables xc

from the set of input variables takes a

minimum value among evaluations @k-lsl,

@k-ls2 ..... @k-lsj ..... _k-lsk. By comparing

the value of @k-lsc of Eq. 10 to the value

of @ks of Eq. 8, the set of variables, As, is

altered as follows.

As = (xl, x2 ..... xc-l, xc+l .... xk},
If @k-lsc < Oks (11)

As= {x1, x2..... xk},

If IDk-lsc 2 @ks (12)

When Eq. 11 is established, the sum

of mean squared errors can be decreased by

removing the input variables xc, and this

means that the estimation eyi' represents yi

better than eyi.

Therefore, the correlation of input

variables xc to the output variables y is

considered weal<, and the input variables

are removed from the input variable sets

As. As a result of this, a set of newly

established input variables is then consisted

of k-1 input variables.

On the other hand, tile effectiveness

obtained by removing input variables

temporarily can not be attained when Eq. 12

is established, and this fact means that the

input variables xc are strongly correlated

with the output variables y, and the number

of sets of input variables As is left

unchanged as k.

In cases where the input variables

can be reduced, k is altered to n-l, n-2 .....

1, and Step 4 is repeated until Eq. 12 can be

established, and the procedures for reducing

the input variables of back-propagation type

network NNs are completed until Eq. 12 can

be established,

Thus, the back- propagation type

network NNs having the final set of input

variables, As = {xl, x2 ..... xm} obtained at

the time of procedure completion, becomes an

optimum back- propagation type network

representing the structure of consequent

paris of rule Rs. The same step procedures

are conducted for each NNs for determining

the consequent parts of all the inference

rules. This procedure to reduce the number

of input variables is called a stepwise

variable reduction method utilizing back-

propagation type network.

Step 5: The estimation yi_ can be derived

by the equation shown below.

r
_'-pAs (xil, xi2 ..... xin) xmeyi(os)
s=l

yi*= r (13)

)--pAs (xil, xi2 ..... xin)
s=l

i=l, 2,..,, N.

where meyis is an estimation obtained by the

optimum back- propagation type network

derived by Step 4.

Fig. 5 shows that the estimation yi>k

can be derived from the results obtained by

conducting product operations between the

membership values of antecedent parts of

each inference rules, or pAs(xil, xi2 .....

xin) and the estimation of consequent

pa_, or meyi (s), and by conducting

summation operations between each rule

continuously. However, Fig. 5 shows a

case where a condition of pAs(xil, xi2 .....
xin) = I is established.

3. APPLICATION TO INVERTED PENDULUM

SYSTEM

The NDF proposed by the authors is

capable of forming inference rules

automatically, i.e., the function of self-

autotuning, and proposed here is an inverted

pendulum system to which a learning

function by using a NDF is applied. In the

algorithm employed for the experiment, four

inputs and one output data are acquired by

observing manual operating controls, and
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fuzzy inference rules and membership
functions are then automatically constructed

from the acquired data by using the

algorithm of NDF.
Fig. 6 shows a structure of inverted

pendulum system consisting of four elements

explained in the following;

1) Cart which runs on a rail.

2) Pendulum rotatable freely around an axis

of cart.

3) Motor which drives the cart.

4) Fixed pulleys and belt system which

connect above three parts.

The pendulum angle apart from the

perpendicular 0 degree and the distance

from the original position of cart are

detected by the potentiometer b and a shown

in Fig. 6 respectively. These are digitized by
an AD converter, and the digitized signals

are fed to a personal computer wherein the

velocities of inverted pendulum angle and

the cart distance are calculated from the

differences in those obtained at every

sampling. The output for the motor control

system is then calculated from four

variables, i.e., the pendulum angle, angular

velocity, cart distance, and the cart velocity

by using an algorithm of NDF. As the motor

control signal is derived by a personal

computer in a digital form, this is converted

into an analog value through a DA

converter.

The inverted pendulum system has

two control areas consisting of a linear-

controlling area where the pendulum is

standing, and a non-linear controlling area

where the pendulum falls. The authors

constructed an inverted pendulum system in

the linear'-controlling area by using a

conventional fuzzy control, and a control

model constructed in the non-linear

controlling area by utilizing NDF, is

reported here.
The configuration of inverted

pendulum system and the control computer

are as follows.

Body : Length of 1,410mm; width of 400mm,

height of 880ram.

Pendulum : Length of 400ram , weight of

4Og , diameter of 4mm.
Drive force : 25W DC motor with a gear ratio

of 12.5 : 1.

Sensors : Potentiometer to measure the

distance from the original position of the

cart, and another potentiometer to measure

the pendulum angle.

Micro-computer : CPU 80286

Program : C-language, 211( bytes.

The preparation of control rules

applicable to an inverted pendulum made

according to an algorithm developed for

constructing the inference rules by applying

NDF is now described in the folowing.

Step k Preparation of input-output data.

This is acquired by an operator who tries to

swing up a pendulum by moving the cart

right or left direction on the rail by pressing

either of corresponding controller buttons

until the pendulum is brought to its inverted

position, and the following input-output data

with a sampling period of 4 msec are

recorded:

Output variable

y : Motor control signal (V).

input variables

xl : Distance from the original cart position.

x2 : Velocity of xl (cm/sec).

x3 : Pendulum angle (deg).

x4 : Velocity of x3 (deg/sec).

where the input variables x2 and x4 are

derived from the differences produced in xl

and x3 values. Approximately 1,000 to 3,000

data are acquired from these manual

operations, and from these, 98 input-output
data shown in Table 1 applied for the NDF

are extracted.

Step 2: Setting of two rules for the input-

output data considering data distributions.

Step 3: Determination of membership

functions of antecedent par_. A three -

layered [4 X 6 X 2] back - propagation type

network employed here for determining the

antecedent part construction is employed

here, and the number of learnings is set at

about 1000.
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Step 4: Determination of consequent part

structure. A three-layered [k x 6 x l] where k

= 4, 3, 2, I, back-propagation type network

for determining the consequent part

structure is employed here, and the number

of learnings of each back-propagation type

network is set at about 3000.

By using a stepwise variable

reduction method, we obtain;

@41 = 0.016 (]4)

® 311= min@31j (= 0.003), j = 1, 2, 3, 4. (15)

Therefore,

@311 < @41 (16)

Thus, by removing the input

variables xl, we obtain As = {x2, x3, x4}. As

for As = {x2, x3, x4}, a stepwise variable

reduction method is applied again. By

combining Ecrs. 8, 9, and 10, we obtain the

followi ngs.

@ 311 = 0.007 (17)

@ 213 = min@21j (= 0.021), j = 2, 3, 4. (18)

This means,

@213 > @311 (19)

Thus, no reduction of input variables

is made, and the algorithm for Rule l is

completed by the second calculation process.

"File inference rules consequently obtained
by these are as follow_

RI ; IF x = (xl, x2, x3, x4) belongs to A1,

THEN yl = NNl(x2, x3, x4),

R2 ; IF x = (xl, x2, x3, x4) belongs to A2,
THEN y2 = NN2(xl, x2, x4) (20)

Photographs I and 2 show the swing-

up motions of pendulum controlled by fuzzy
inference rules expressed by Eq. (20).

Photograph 1 shows sequential motions of
pendulum swang from its stable equillibrium
state to an inverted stand--still state. Tile

estimation yi* can be derived from Eq. (13).

The pendulum can be surely brought to its

inverted position regardless the cart position

on the rail, or a disturbance applied to the

pendulum. Photograph 2 shows the controls

of swing- up motion for various given

pendulum angles.

An experimental study for the

limitation of control performed by NDF is

conducted by changing the parameters which

govern the dynamic characteristics of

controlled object, and the length of pendulum

is taken as a parameter governing the

dynamic characteristics of pendulum here.

The initial position of cart is set at the

center position of belt on which the inverted

pendulum device is mounted, and the

pendulum angle is set at 0 degree when it is

hanged down initially and 4-180 degree is

specified when the pondulum is in an

inverted position. The angle is incremented

for its clockwise rotation, and decremented

for its anti-clockwise rotation.

The inference rules are constructed

for a case where pendulum length is 40 cm,

and Fig. 7 shows a response of pendulum of

such. Figs. 8, 9, and 10 respectively show the

responses of the 20, 30, and 50 cm long

pendulums. The shifts of pendulum angle are

shown by solid lines, and the changes of

angular velocity are shown by broken lines

in these figures. However, only the changes

of pendulum angle and angular velocity

until the pendulum comes to an inverted

position, and no response after completion of

inversion are shown there.

As for the learning of inverted

pendulum, the swing-up process of pendulum

is learnt for constructing an inference rules
applicable to the process of pendulum

starting from the hanged down postion to a
nearly inverted position, The inverted
position is defined as a pendulum angle

close to +180 degree and its angular velocity
nearly zero at that time.

As shown in Fig. 7, the pendulum
reaches at -180 degrees at 5.4 seconds after

starting of control attaining an angular
velocity of about 0 deg /sec, and the
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pendulum stand still at an inverted position.
This is rather natural consequence since an

inference rules are established for a 40 cm

long pendulum.
In a case where the length of

pendulum is set at 20 cm as shown in Fig.

8, a large velocity change is observed, and

the angle became 180 degrees at 6.2 seconds

attaining an angular velocity of about 0 deg

/sec. Although the pendulum reaches at an

inverted position and stays there, the

angular velocity is larger and a longer lead-

in period is required.
Fig. 9 shows a transient response of

a 30 cm long pendulum. The pendulum is

brought to its inverted position showing a
response similar to that obtained with the 40

cm long pendulum, but the angle reaches at
-180 degrees at 3.9 sec yielding a higher

anlgular velocity which equals to about one
half of that obtained with the 20 cm long

pendulum. The overall controllable

characteristics is silimar to that of 40 cm

long pendulum.
Fig. lO shows a transient response

obtained with a 50 cm long pendulum which
was unable to brought to its inverted

position. As seen in Fig. lO, the pendulum

angle could not be brought to its +180 degree
position despite of longer lead-in period. Tile
correlation between dynamic characteristics

of pendulum and the variable length of

pendulum can be summarized as follows.
1) By applying a NDF to a pendulum system

of which length is varied from 40 to 20 cm,
a stable operation to bring the pendulum to
its inverted position became feasible despite

of lead-in period required for its motions.
That is to say, tile robustness of NDF is

higher for the shorter length pendulum.
2) for tile cases of longer pendulums,"

however, the suppression of deviations of the

control system can not be attained, and this
means that a relearning or additional

learning is necessary for the NDF applied

for a longer pendulum.

4. CONCLUSION

While the conventional fuzzy

reasoning is associated with inherent tuning

problems, NDF is, upon input- output

variables are given, capable of determing an

optimum inference rules and membership

functions by utilizing its nonlinearity of

back-propagation type network and learning

capabilities. In order to verify the

usefullness of NDF, it is applied to an

experimentally constructed pendulum system

wherein the pendulum is brought to its

inverted position and stayed there starting

from its stable hanged position. The length

of pendulum is also altered for confirming

itrs effects on the control characteristics of

NDF.

Since this method is capable of

deriving an inference rules by using tile

learning function of back-propagation type

network, the learning function can be

introduced in the fuzzy control. The

development of learning function adaptive to

the changes of dynamic inference

environment should be an important subject

to be discussed in future.
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Fig.B Structure of Inverted Pendulum System

Table l Input and Output data of Inverted Pendulum System

Input Data

_o. I x, [c,] x_ [c,/sec]

i

I ( -1.1482 0.0000

I 2 I -0.0201 8.5486

3 ] 3.2197 29.9073

; 4 I 7.8338 38.4472

! 5 I 10.9510 4.2697

I 6 I 9.3718 -21.3586

7 I 5.3319 -38.4560

8 I 0.1432 -42.72611

X_Idczi I x,[dcg/sec]

- t

178.5074]

180.91291

185.64391

188.46601

182.7386[

165.30851

151.5283[

150.9487[

autpu_ 8ata

y [vl

0.0000 0.7597

34.5660 0.7421

34.5660 0.7617

0.0000 0.0039

-121.0536 -0.7168

-155.6554 -0.7968

-69.1678 -0.7519

51.8840 -0.7519

951 10_8_311708.
9_I 7.o1351-42_26,
Y_I l_l -38LLe°

'_l -62_361 -°_'_Ls19I
s8_,41-34s._sG t -0.7s19 I
27.01701-1_.33571 0.0039 I
I_._41_I -5,.8_221-0.0o,9I
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Fig.10 Angle and Angular Velocity

of 50 cm Long Pendulum
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Photo.l Control of Inverted Pendulum System (No.])
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Photo.2 Control of Inverted Pendulum System (No.2)
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